Prevalence of Bacterial Agents in Children with Acute Gastroenteritis in the Pediatric Emergency Department of Ege University School of Medicine

Gülhadiye Avcu¹, Zümrüt Sahbudak Bal¹, Eylem Ulaş Saz², Şöhret Aydemir³, Fadıl Vardar¹
¹Division of Pediatric Infection, Ege University School of Medicine, İzmir, Turkey
²Division of Pediatric Emergency, Ege University School of Medicine, İzmir, Turkey
³Department of Microbiology, Ege University School of Medicine, İzmir, Turkey

Abstract

Objective: Acute gastroenteritis is one of the main causes of morbidity and mortality in childhood. Although rotavirus is reported to be the most common agent in diarrhea, infectious gastroenteritis due to enteric pathogenic bacteria is still widely seen in developing and underdeveloped countries. In this study, we aimed to determine the incidence of bacterial agents in children with acute gastroenteritis in Pediatric Emergency Department of Ege University School of Medicine.

Material and Methods: Data of patients aged 0-18 years with acute gastroenteritis, who were admitted to our hospital between September 2013 to August 2014 were analyzed retrospectively. Frequency of bacterial gastroenteritis, antimicrobial susceptibility and seasonal variations were investigated.

Results: Bacterial pathogens were detected in 143 (16.3%) of 875 stool cultures. Among them, Campylobacter spp. was detected in 88 (10.1%) cases, Salmonella spp. in 43 (4.9%) cases and Shigella spp. in 12 (1.4%) cases. No cases of Vibrio spp. and E. coli were isolated. Campylobacter spp. were isolated in all months of the year with a slight increase in frequency in spring while Salmonella spp. and Shigella spp. were the most common agents in summer. Salmonella spp. were the least resistant isolates. We determined increased resistance to quinolones in Campylobacter isolates. Majority of isolated Shigella spp. were resistant to co-trimoxazole. Resistance to 3rd generation cephalosporins was detected in three cases of S. sonnei gastroenteritis.

Conclusion: The most common bacterial enteropathogen in acute gastroenteritis was C. jejuni in our region and quinolone resistance was higher than expected. In the light of these findings, azithromycin may be a good option in the empirical treatment of acute diarrhea when antibiotics are indicated.

Keywords: Acute gastroenteritis, etiology, bacteria, Campylobacter, child
Introduction

Infectious gastroenteritis still remains a major cause of morbidity and mortality worldwide (1). Although it is observed in all age groups, children under the age of five years are the most affected. Acute gastroenteritis (AGE) constitutes 8.4% of the diseases causing mortality in the 0–14-year-old age group in Turkey (2). A variety of pathogens can cause AGE depending on seasonal and geographical differences, socioeconomic status, and host immunity. Viruses are the most common agents of AGE. Gastroenteritis due to bacteria and parasites has become less frequent in industrial nations, but it continues to be an important reason for hospitalization in underdeveloped and developing countries. Bacterial agents are detected in 1.5% to 5.6% of cases with acute diarrhea (3). Bacterial agent distribution shows regional variations. Salmonella spp. and Campylobacter spp. are the most frequent bacterial causative agents (4). Bacterial and viral gastroenteritis present with different clinical features. Vomiting and watery diarrhea without mucus and blood are usually observed in patients with viral AGE, while bloody diarrhea and presence of mucus and leukocytes in stools are typically seen in bacterial AGE. Most cases of acute bacterial diarrhea are self-limiting. Treatment includes rehydration and, in some cases, antibiotics. Antibiotics are recommended in cases of febrile diarrhea, which is thought to cause an invasive disease (5).

In our hospital, we observed an increase in bacterial gastroenteritis, and the majority of them were bloody. A small number of patients required hospitalization, but several antibiotics were given to outpatients. This is the reason why we aimed to find the frequency of bacterial gastroenteritis, the most common enteropathogens, antimicrobial resistance, and seasonal variations in our region for a proper management.

Material and Methods

Patients aged 0–18 years who were admitted to the Pediatric Emergency Department of Ege University School of Medicine between September 2013 and August 2014 and who were diagnosed with AGE (diarrhea lasting for less than 14 days) and had bacteria in stool cultures were included. Demographic data of patients and data on the season when they were admitted to the hospital, bacterial pathogens in the stool culture, and antibiotic susceptibilities were retrospectively investigated from medical records. Because this was a retrospective study, there was no requirement for ethical approval and patient consent.

Bacterial agents were identified using conventional culture methods in our hospital (Ege University Medical School Hospital, Department of Clinical Microbiology, Bacteriology Laboratory). Stool samples were investigated for the presence of bacteria, including Salmonella spp., Shigella spp., Campylobacter spp., Escherichia coli, and Vibrio spp. using standard microbiological procedures; this was followed by antibiotic susceptibility testing.

Laboratory procedures

Salmonella spp. and Shigella spp. were routinely investigated in all stool samples. Campylobacter spp. and enterohemorrhagic E. coli were investigated in patients in whom fecal leukocytes and erythrocytes had been respectively detected. Yersinia and Vibrio spp. were investigated on special request.

Stool samples were plated on Skirrow agar (bioMerieux, France) for Campylobacter spp., and plates were incubated at 42°C for 72 h in a microaerophilic environment provided in anaerobic jars with a Campy-Gen (Oxoid, England) kit. Identification was performed with VITEK 2 and VITEK MS (bioMerieux, France). Etest (AB Biodisk-bioMerieux, France) was used for antibiotic susceptibility.

Stool samples were plated on sorbitol MacConkey agar (bioMerieux, France) for E. coli O157:H7 isolation, and identification was made with VITEK 2 and VITEK MS (bioMerieux, France) and latex agglutination (Wellcolex E. coli O157:H7, Remel Europe Ltd., UK).

For Salmonella and Shigella spp., samples were plated on eosin–methylene blue agar (bioMerieux, France) and Hector the enteric agar (bioMerieux, France). Biochemical tests were performed for colonies suspected to be pathogenic after the recommended temperature was reached and time had lapsed and when necessary. Identification was made with VITEK 2 and VITEK MS (bioMerieux, France). Salmonella and Shigella serotypes were determined by slide agglutination (Selke Denka Co., Japan). The antibiotic susceptibilities of all Salmonella and Shigella species for ciprofloxacin (5 μg), ampicillin (10 μg), cefotaxime (30 μg), and trimethoprim/sulfamethoxazole (25 μg) (Oxoid, England) were examined with the Kirby–Bauer disk diffusion method according to the recommendation of the Clinical and Laboratory Standards Institute.

Statistical analysis

Data analysis was performed using Statistical Package for the Social Sciences version 16.0 (SPSS, Inc.; Chicago, IL, USA).

Results
During the study period, 3,762 patients were diagnosed with AGE in the Pediatric Emergency Department. Stool samples from 875 patients were sent for culture. Bacterial pathogens were detected in 143 (16.3%) stool cultures. We identified *Campylobacter* spp. in 88 (10.1%) cultures, *Salmonella* spp. in 43 (4.9%), and *Shigella* spp. in 12 (1.4%) (Table 1). *Vibrio* spp. and *E. coli* were not isolated in any culture. In total, 378 patients (43.2%) were females and 497 (56.8%) were males. The median age was 28 months (2–204 months), while 46.1% of patients were two years old and three patients with *Campylobacter jejuni* in their stool cultures were under six months old. Around a quarter (27.8%) of the patients were admitted to the hospital in spring, 25.8% in autumn, 24.3% in summer, and 22.8% in winter. There was a peak in *Salmonella* spp. (53.5%) and *Shigella* spp. (83.3%) in summer, but majority of cases with *C. jejuni* (36.4%) were detected in spring (Figure 1). Bloody diarrhea was identified in 32 (23.8%) cultures. *C. jejuni* (56.2%) was the most frequent agent among children with bloody diarrhea. Totally, 131 patients (91.6%) were treated as outpatients, while 12 (8.3%) were hospitalized. Eighty-three (97.7%) *C. jejuni* strains were susceptible to erythromycin, and 52 (79.5%) of them were found to be resistant to ciprofloxacin. All *Salmonella* spp. isolates were susceptible to ampicillin. More than half of all *Shigella* spp. (58.3%) isolates were resistant to ampicillin, and 25% of them were resistant to third-generation cephalosporins (Table 2). All hospitalized patients had fever. *Salmonella enteritidis* was identified in seven and *C. jejuni* in four hospitalized patients. *Shigella sonnei* was detected in a 15-year-old who developed hypovolemic shock and who was followed in the pediatric intensive care department. Half of the patients received third-generation cephalosporins, three of them received metronidazole, and the remaining three received azithromycin. We have insufficient data on the antibiotic treatment of outpatients.

Discussion

Acute gastroenteritis takes the second place in terms of morbidity among infections during childhood. More than 1.8 million children under the age of five years die due to diarrheal diseases every year (6). The causes of gastroenteritis vary depending on age, season, and geographical features. Bacteria, viruses, parasites, and amoebae play a role in etiology. Rotaviruses are the principal etiological agents in hospitalized children under the age of five years affected by AGE. Bacterial pathogens only account for 2–10% of cases in developed countries, but they are more frequent in underdeveloped countries (7).

In a study in Spain, the incidences of rotaviruses, *C. jejuni*, and *Salmonella* spp. were 22%, 7%, and 4%, respectively (8). Wiegering et al. (9) reported rotaviruses as the main causative agent, while *Salmonella* was detected in 7.9% of the stool samples in Germany. Similarly, the incidence of bacterial gastroenteritis was reported to be 8.8%, and *Salmonella enterica* was the predominant pathogen in the long-term study by Maraki et al. (10) in Crete.

In our study, stool samples were examined for *Salmonella*, *Shigella*, *Campylobacter*, *Vibrio*, and *E. coli*. *C. jejuni* was the predominant bacterial agent of infectious diarrhea in our region, with an incidence of 10.1%, and was responsible for more than half of the bloody diarrhea. It was self-resolving in majority of the cases. *Salmonella*

Table 1. Prevalence of bacterial pathogens and age distribution of patients in those with acute gastroenteritis

<table>
<thead>
<tr>
<th>Bacterial agents</th>
<th>Number of bacterial agents and frequency</th>
<th>0-6 months</th>
<th>6 month-2 years</th>
<th>2-5 years</th>
<th>> 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter jejuni</td>
<td>88 (10.1%)</td>
<td>3 (3.4%)</td>
<td>30 (34%)</td>
<td>22 (25.1%)</td>
<td>33 (37.5%)</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>43 (4.9%)</td>
<td>0</td>
<td>11 (25.5%)</td>
<td>20 (46.5%)</td>
<td>12 (27.9%)</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>12 (1.4%)</td>
<td>0</td>
<td>1 (8.3%)</td>
<td>5 (41.6%)</td>
<td>6 (50%)</td>
</tr>
</tbody>
</table>

Table 2. Antimicrobial resistance of bacterial specimens isolated from stools

<table>
<thead>
<tr>
<th></th>
<th>S. enteritidis n=43 (%)</th>
<th>S. sonnei n=9 (%)</th>
<th>S. flexneri n=2 (%)</th>
<th>S. dysenteriae n=1 (%)</th>
<th>C. jejuni n=85 (%)</th>
<th>C. coli n=3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>0</td>
<td>4 (44.4)</td>
<td>1 (50)</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Co-trimoxazole</td>
<td>0</td>
<td>7 (77.7)</td>
<td>1 (50)</td>
<td>1 (100)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52 (61.1)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>--</td>
<td>3 (33.3)</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2 (2.3)</td>
<td>0</td>
</tr>
</tbody>
</table>
spp. were the second most causative agent, and Shigella spp. were rarely detected (1.4%).

Campylobacter is a small gram-negative microaerophilic bacterium and is the leading cause of bacterial enteritis in industrialized countries these days (10, 11). This can be associated with food consumption in restaurants because the most common sources of infection are raw or undercooked meat, particularly poultry products. Contact with pets may cause infection, and outbreaks can be seen with the usage of untreated water and unpasteurized milk (11, 12). As in our region, increasing temperatures are more suitable for the survival of Campylobacter. Maragkoudakis et al. (3) found an increased incidence of C. enteritis in adult patients over the years (particularly after the tap water outbreak) in Greece, which has similar characteristics to our region.

Campylobacter spp. were isolated in all months of the year, but an increase in their incidence was observed in spring months. There was a peak in Salmonella spp. and Shigella spp. in summer, and C. jejuni gastroenteritis was also frequently detected in this season. This may be related to the positive effect of higher temperature on the proliferation of these pathogens in food and water. C. jejuni (15.7%) was the most common enteropathogen in infants and preschoolers in Western Mexico in the study by Larrosa-Haro et al. They reported higher summer rates of Salmonella spp., Shigella spp., and Campylobacter spp. (12).

Rehydration is the main treatment for AGE. Antimicrobials are frequently used inappropriately for the treatment of acute enteric infections; therefore, adverse outcomes, increased treatment costs, and antimicrobial resistance can occur (13). In cases where empirical antibiotic therapy is necessary, knowledge on local epidemiology and local patterns of susceptibility can be useful. Antibiotics are recommended for severe cases of Salmonella gastroenteritis (also in high-risk patients), in invasive cases, in cases with proven or strong suspicion of shigellosis, and in cases of early diagnosis of diarrhea due to C. jejuni (14).

Campylobacter infection is usually mild and self-limited. The estimated mortality from symptomatic infection in the United States is reported to be 2.4 per 1000 culture-confirmed cases (15, 16). Antimicrobial therapy is warranted only in patients with severe disease (with bloody stools, high fever, extraintestinal infection, worsening or relapsing symptoms, or symptoms lasting longer than one week) and in risk groups (immunocompromised) (15). First-line agents for the treatment of Campylobacter gastroenteritis include quinolones (if sensitive) or azithromycin. The rate of macrolide-resistance among Campylobacter spp. has remained stable at <5% in most parts of the world, but quinolone resistance is increasing (17-19).

Antibiotic resistance has been changing over the years with the effect of regional differences and empirical antibiotic treatments. In a study conducted in Niger, among children under the age of five years, enteropathogenic E. coli, Salmonella, and Campylobacter spp. were frequent in watery diarrhea, and Shigella spp. were the most frequent in bloody diarrhea. More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. They found that 13% of Salmonella cultures exhibited an extended-spectrum beta-lactamase phenotype (5). Randrianirina et al. (20) reported that resistance to penicillin and co-trimoxazole was highly prevalent among Shigella and E. coli (60%–80%), but the resistance was less prevalent among Salmonella spp. in Madagascar. Resistance to third-generation cephalosporins was found only in 1.2% of Salmonella and 3.1% of E. coli cultures. Ampicillin resistance was the most common among Campylobacter spp., while most of them were susceptible to erythromycin and ciprofloxacin.

We determined an increased resistance to quinolones in 61.1% of C. jejuni and 100% of E. coli cultures. Almost all of them were susceptible to erythromycin. Salmonella spp. were the least resistant isolates. All Salmonella spp. were susceptible to ampicillin. Majority of isolated Shigella (S. sonnei, 77.7%; S. flexneri, 50%; and S. dysenteriae, 100%) were resistant to co-trimoxazole. Ampicillin resistance was found in 44.4% of S. sonnei and 50% of S. flexneri cultures, and 33% of S. sonnei cultures were resistant to cefotaxime. All Shigella isolates were susceptible to ciprofloxacin. In our hospital, the increased resistance to quinolones and co-trimoxazole may have been due to the widespread use of these antibiotics in empirical treatment, particularly in patients with bloody diarrhea.

In conclusion, the frequency of bacterial pathogens in AGE may show regional differences. Therefore, knowledge
on local epidemiological differences is important for proper treatment. We showed the predominance of *C. jejuni* during childhood acute diarrhea in our region; *C. jejuni* was responsible for most bloody diarrhea cases and was found to be frequently resistant to quinolones. Therefore, we think that if antibiotics are indicated, azithromycin may be a good option for the empirical treatment of acute diarrhea in areas where *Campylobacter* is the most common agent.

Ethics Committee Approval: Ethics committee approval was not received due to the retrospective nature of this study.

Informed Consent: Written informed consent was not received due to the retrospective nature of this study.

Peer-review: Externally peer-reviewed.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References